Metrical Quantization *

نویسنده

  • John R. Klauder
چکیده

Canonical quantization may be approached from several different starting points. The usual approaches involve promotion of c-numbers to q-numbers, or path integral constructs, each of which generally succeeds only in Cartesian coordinates. All quantization schemes that lead to Hilbert space vectors and Weyl operators—even those that eschew Cartesian coordinates—implicitly contain a metric on a flat phase space. This feature is demonstrated by studying the classical and quantum “aggregations”, namely, the set of all facts and properties resident in all classical and quantum theories, respectively. Metrical quantization is an approach that elevates the flat phase space metric inherent in any canonical quantization to the level of a postulate. Far from being an unwanted structure, the flat phase space metric carries essential physical information. It is shown how the metric, when employed within a continuous-time regularization scheme, gives rise to an unambiguous quantization procedure that automatically leads to a canonical coherent state representation. Although attention in this paper is confined to canonical quantization we note that alternative, nonflat metrics may also be used, and they generally give rise to qualitatively different, noncanonical quantization schemes. ∗Presented at the workshop on Quantum Future, Przesieka, Poland, September, 1997

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metric and Curvature in Gravitational Phase Space

At a fixed point in spacetime (say, x0), gravitational phase space consists of the space of symmetric matrices {F ab} [corresponding to the canonical momentum π(x0)] and of symmetric matrices {Gab} [corresponding to the canonical metric gab(x0)], where 1 ≤ a, b ≤ n, and, crucially, the matrix {Gab} is necessarily positive definite, i.e. ∑ uGabu b > 0 whenever ∑ (ua)2 > 0. In an alternative quan...

متن کامل

A Vector Quantization Approach for Life-Long Learning of Categories

We present a category learning vector quantization (cLVQ) approach for incremental and life-long learning of multiple visual categories where we focus on approaching the stability-plasticity dilemma. To achieve the life-long learning ability an incremental learning vector quantization approach is combined with a category-specific feature selection method in a novel way to allow several metrical...

متن کامل

ar X iv : g r - qc / 0 11 20 53 v 1 2 0 D ec 2 00 1 Metric and Curvature in Gravitational Phase Space

At a fixed point in spacetime (say, x0), gravitational phase space consists of the space of symmetric matrices {F ab} [corresponding to the canonical momentum π(x0)] and of symmetric matrices {Gab} [corresponding to the canonical metric gab(x0)], where 1 ≤ a, b ≤ n, and, crucially, the matrix {Gab} is necessarily positive definite, i.e. ∑ uGabu b > 0 whenever ∑ (ua)2 > 0. In an alternative quan...

متن کامل

ar X iv : g r - qc / 0 11 20 53 v 2 2 1 D ec 2 00 1 Metric and Curvature in Gravitational Phase Space

At a fixed point in spacetime (say, x0), gravitational phase space consists of the space of symmetric matrices {F ab} [corresponding to the canonical momentum π(x0)] and of symmetric matrices {Gab} [corresponding to the canonical metric gab(x0)], where 1 ≤ a, b ≤ n, and, crucially, the matrix {Gab} is necessarily positive definite, i.e. ∑ uGabu b > 0 whenever ∑ (ua)2 > 0. In an alternative quan...

متن کامل

ar X iv : g r - qc / 0 11 20 53 v 3 2 6 A pr 2 00 2 Metric and Curvature in Gravitational Phase Space

At a fixed point in spacetime (say, x0), gravitational phase space consists of the space of symmetric matrices {F ab} [corresponding to the canonical momentum π(x0)] and of symmetric matrices {Gab} [corresponding to the canonical metric gab(x0)], where 1 ≤ a, b ≤ n, and, crucially, the matrix {Gab} is necessarily positive definite, i.e. ∑ uGabu b > 0 whenever ∑ (ua)2 > 0. In an alternative quan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008